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SUMMARY

The paper is studying the problem of estimating individual weights of objects, using
a chemical balance weighing design under the restriction on the number of times in
which each object is weighed. A lower bound for the variance of each of the estima-
ted weights from this chemical balance weighing design is obtained and a necessary
and sufficient condition for this lower bound to be attained is given. The incidence
matrices of balanced bipartite block designs are used to construct the design matrix
of chemical balance weighing designs under the restriction on the number in which
each object is weighed.
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1. Introduction

The results of n weighing operations to determine the individual weights of p objects
with a balance that is corrected for bias will fit into the linear model

y=Xw+e, (1)

where y is an n x 1 random column vector of the observed weights, X = (z;;), =
1,2...,n, j=1,2...,p, is an n x p matrix of known elements with z;; = —1,1
or 0 if the jth object is kept on the right pan, left pan, or is not included in the
particular weighing operation, respectively, w is the p x 1 column vector representing
the unknown weights of objects and e is an 7 x 1 random column vector of errors such
that E(e) = 0, and E(ee’) = 0°I,, where 0, is the n X 1 column vector with zero
elements everywhere, I, is the n x n identity matrix, “E” stands for the expectation
and €’ is used for transpose of e.
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The normal equations estimating w are of the form
X'Xw = X"y, (2)

where W is the vector of the weights estimated by the least squares method.

A chemical balance weighing design is said to be singular or nonsingular, depending
on whether the matrix X'X is singular or nonsingular, respectively. It is obvious that
the matrix X'X is nonsingular if and only if the matrix X is of full column rank (= p).

Now, if X'X is nonsingular, the least squares estimate of w is given by

w = (X'X) X'y (3)
and the variance - covariance matrix of W is
Var(w) = o2 x’ X)'l. 4)

Various aspects of chemical balance weighing designs have been studied by Ragha-
varao (1971) and Banerjee (1975). Hotelling (1944) have showed that the minimum
attainable variance for each of the estimated weights for a chemical balance weighing
design is 0%/n and proved the theorem that each of the variance of the estimated
weights attains the minimum if and only if X'X = nl,. This design is said to be
optimum chemical balance weighing design. In other words, matrix X of an optimum
chemical balance weighing design has as elements only -1 and 1. In this case several
methods of constructing optimum chemical balance weighing design are available in
the literature.

Some methods of constructing chemical balance weighing design in which the esti-
mated weights are uncorrelated, in the case when the design matrix X has elements
-1, 1 and 0, were given by Swamy (1982), Ceranka et al. (1998) and Ceranka and
Katulska (1999).

In the present paper we study another method of constructing the design matrix
X for an optimum chemical balance weighing design, which has elements equal to -1,
0 and 1, under the restriction on the number of times in which each object is wei-
ghed. This method is based on incidence matrices of balanced bipartite block designs.

2. Variance limit of estimated weights

Let X be an n x p matrix of rank p of a chemical balance weighing design and let m;
be the number of times in which jth object is weighed (i.e. the m; be the number of
elements equal to —1 and 1 in jth column of matrix X), j = 1,2,...,p. Ceranka and
Graczyk (2001) proved the following theorems.
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THEOREM 2.1. For any nonsingular chemical balance weighing design given by matriz
X, the variance of w; of a particular j such that 1 < j < p cannot be less than o%/m,
where m = maz{mi, ma,...,mp}.

THEOREM 2.2. For any n X p matriz X, of a nonsingular chemical balance weighing
design, in which mazimum number of elements equal to -1 and 1 in columns is equal
to m, each of the variances of the estimated weights attains the minimum if and only if

X'X =ml,,. (5)

DEFINITION 2.1. A nonsingular chemical balance weighing design is said to be optimal
for the estimating individual weights of objects if the variances of their estimators
attain the lover bound given by Theorem 2.1, i.e., if

ol

Var(d;) = m,j =1,2,...,D. (6)

In other words, an optimum design is given by X satisfying (5).

In the next sections we will present construction of matrix X of optimum chemi-
cal balance weighing design based on the set of the incidence matrices of balanced
bipartite block designs.

3. Balanced bipartite block designs

A balanced bipartite block design is an arrangement of v treatments into b blocks such
that each block containing k distinct treatments is divided into 2 subblocks containing
k1 and ks treatments, respectively, where k = k; + k2. Each treatment appears in
r blocks. Every pair of treatments with different subblocks appears together in A;
blocks and every pair of treatments with the same subblock appears together in Az
blocks. The integers v,b,T, ki, ks, A1, A2 are called the parameters of the balanced
bipartite block design. Let N* be the incidence matrix of this design.The parameters
are not all independent and they are related by the following indentities

vr = bk,
b = Mo(v—1)/(2kik2),
Ao = Mlki(kr — 1) + ka(k2 — 1)]/(2k1k2), )
r = Mhk(v—1)/(2k1ks),
N*N* = (r — A1 — A2)L, + (A1 + A2)1,1),

where 1, is v x 1 vector with elements equal to 1 everywhere.
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4. Construction of design matrix using two balanced
bipartite block designs

Let N3, h = 1,2, be the incidence matrix of the balanced bipartite block design with
the parameters v, by, Th, k1n, k2n, Ah, A2n. Now, the N}, can be obtained from N3
by replacing the k;; elements equal to 1 of each column which correspond to the
elements belonging to the first subblock by ~1. Thus each column of N}, will contain
k1 elements equal to -1, kop elements equal to 1 and v — kyp, — kop, elements equal
to 0.

Now, we define the matrix X of chemical balance weighing design as

NI
x=[M ] . g
N ©
In this design each of the p = v objects is weighed m = ry + 73 times in n = by + by
weighing operations. In other words, in each of the b, weighing operations, ks, + kop,

objects are weighed, in such a way that k;;, of them are weighed on the right pan and
kon on the left pan, h =1, 2.

LEMMA 4.1. The chemical balance weighing design with design matriz X given in the
form (8) is nonsingular if and only if

k11#ka (9)
or
k1a#kss. (10)
Proof. For the design matrix X given above, we have
X'X =[r1+72 = (Aa1 + Aoz — A1 — Ai2)] Ly + (Aax + Ao — Ay — A12)1,1;,  (11)
and
det(X'X) = [r1472~(da1 + Aoz — Aip = A2)]* ! x
' X[r1+72 4+ (v — 1)(A21 + Aoz — A1 — A2)).- (12)
The determinant (12) is equal to 0 if and only if
T+ 72 = Ao1 + Aoz — A — Are (13)

or

1+ 712 = (1 —v)(A21 + A2z — Ad11 — A12). (14)
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Using (7) it can be shown that (13) implies
[}\11(1011 + k21) + A12(k12 + kzz)] _ A1 (ka1 — k11)? + Ai2(koo — k12)?

2k11k21 2k12ko2 2k11ko1 2k12k22
which is not satisfied since v > ki1 + k21 and v > k1o + koo. Again, using (7) it can
be established that (14) implies
(k21 — k11)> =0
and
(ko2 — k12)? = 0.
The last exspression is positive if and only if k11 # k21 or k12 # k22. O

THEOREM 4.1. The nonsingular chemical balance weighing design with matriz X
given by (8) is optimal if and only if

(M21 = A1) + (A22 — A12) =0. (15)

Proof. From the conditions (5) and (11) it follows that a chemical balance weighing
design is optimal if and only if the condition (15) holds. Hence the theorem. O

If the chemical balance weighing design given by matrix X of the form (8) is
optimal then

o?

Var(w;) = .

i=12,...,p.

COROLLARY 4.1. If the nonsingular chemical balance weighing design with matriz X
given by (8) is optimal then

ka1 — k11 = Vi + ka1 (16)
and

koo — k12 = k12 + ko2. (17)

Proof. According to Theorem 2.2 X is the matrix of the optimum chemical balance
weighing design if and only if X’X = mI,. This condition is satisfied if A1y = A21
and A2 = A22. From (7) and (15) we have

_ Aunlkin(kin — 1) + kon(kan — 1))
2k1nkan ’

A2k h=1,2
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and

A A2
2k11ka 2k12ka

The thesis of corollary is a result of this equation. O

[(km - ]i711)2 - (k11 + k21)] + [(k22 - k12)2 - (k12 + k22)] =0.

COROLLARY 4.2. Let kyy, ko1, k12 and kg are positive integers. The conditions (16)
and (17) are satisfied if and only if

s—1 s(s+1 u(u—1 u+1
k11=s—(7~—), k21=¥, k12=¥, and k22='u(2—),

where s,u are positive integers greater than 1.

From Corollary 4.2 and the relations (7) between parameters of balanced bipartite
block designs we have

COROLLARY 4.3. The existence of balanced bipartite block designs with parameters

2 -1 2 -1 -1
v, b= ___;11)2(0 ), Ty = ___112(11 ), ki = ste—1) ),
S (S - 1) st -1 2 (18)
s(s+1)
ko1 = B A1 = A1
and
v, by 2A;2v§v — 1), ry = 2/\122('0 ~ 1)’ kig = u(u — 1)’
u?(u? — 1) u? -1 2 (19)
u(u+1)
koo = 7 A12 = Ag2

implies the existence of the optimum chemical balance weighing design with matriz X
given in the form (8), where s,u are positive integers greater than 1.

We have seen in Corollary 4.3 that if parameters of balanced bipartite block designs
are defined by (18) and (19) then a chemical balance weighing design with matrix
X given by (8) is optimal. On the base of the series of parameters of balanced
bipartite block designs given by Ceranka and Katulska, (1999) we give the parameters
of balanced bipartite block designs, which satisfied conditions (18) and (19) in the
Table 1. These designs lead to the optimum chemical balance weighing design with
matrix X given in the form (8). The parameters are given under the restriction
v <25, b< 50 and ki, + ko, = 4,9,16, h = 1,2.

We can notice, that if parameters of two balanced bipartite block designs satisfy
the condition (15), then the chemical balance weighing design with matrix X given by
(8) is optimal. We have formulated theorem following from the paper Huang (1976).
Parameters of balanced bipartite block designs given in the Theorem 4.2 satisfied the
condition (15).



Table 1. Parameters of balanced bipartite block designs

Optimum chemical balance weighing designs
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1 design 2 design
v | by | 1 | ki | ko j A [ Aar || v | b2 | o | kia | ka2 | Az | Az2
5 110} 8 1 3 3 3 5 110 | 8 1 3 3 3
5 | 10| 8 1 3 3 3 5 120 16 1 3 6 6
5 (20| 16 1 3 6 6 5 |20 ] 16 1 3 6 6
6 | 15| 10 1 3 3 3 6 [ 15| 10 1 3 3 3
6 | 15| 10 1 3 3 3 6 30| 20 1 3 6 6
6 | 30| 20 1 3 | 6 6 6 {301 20 1 3 6 6
7 7 4 1 3 1 1 7 7 4 1 3 1 1
7 7 4 1 3 1 1 7114 | 8 1 3 2 2
7 7 4 1 3 1 1 7 12112 1 3 3 3
7 7 4 1 3 1 1 712816 1 3 4 4
7 7 4 1 3 1 1 7 135120 1 3 5 5
7114 8 1 3 2 2 7114 | 8 1 3 2 2
7 114 ] 8 1 3 2 2 7 121112 1 3 3 3
7114 8 1 3 2 2 7128 16 1 3 4 4
7 14 | 8 1 3 2 2 7 135120 1 3 5 5
7 121 |12 1 3 3 3 7121112 1 3 3 3
7 121 | 12 1 3 3 3 7 12816 1 3 4 4
7 121112 1 3 3 3 7 135120 1 3 5 5
7 128 | 16 1 3 4 4 7 | 28116 1 3 4 4
7 128 |16 1 3 4 4 7 1351 20 1 3 L) 5
7 135120 1 3 5 5 7135120 1 3 5 5
8 | 28] 14 1 3 3 3 8 | 28] 14 1 3 3 3
9 136116 1 3 3 3 9 136 | 16 1 3 3 3
1010 9 3 6 4 4 10110 9 3 6 4 4
1010 9 3 6 4 4 101 15| 6 1 3 1 1
10 (10] 9 3 6 4 4 10 ] 20 | 18 3 6 8 8
1010 9 3 6 4 4 10 | 30 | 12 1 3 2 2
10 (10] 9 3 6 4 4 10 | 45 | 18 1 3 3 3
10 {15 ] 6 1 3 1 1 10115} 6 1 3 1 1
1010 9 3 6 4 4 10 | 30 { 12 1 3 2 2

THEOREM 4.2. The existence of a balanced bipartite block designs with the parameters
(Z) v = 68, b1 = 68(68 - 1),7‘1 = 3(68 - 1), ku = l,kzl = 2,)\11 = 4,)\21 =2 and
v = 65‘, b2 = 63(63 fnd 1), Ty = 7(68 - 1), k12 = 2, k22 = 5, )\12 = 20, )\22 = 22,

§=2,3,.

.y

(ZZ) v=4s+1,b) = 23(48 + 1),1‘1 = 16s,k11 = 3,k21 = 5,A11 = 15,221 = 13 and
v=4s+1,by = S(4S+ 1),?‘2 =8s,k12 =2,kao =6, \12 =6,X20 =8, s=2,3,...,
(ZZ’L) v=4s+1, b = 28(43+ 1), 1 =68, k11 = Lka1 =2, A11 =2, Ao1 =1 and
v=4s+1,by = S(4S+ 1),’!‘2 =5s,k12 =1,k =4, \12=2,X220=3,5=1,2,..,
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Table 1. Continued

1 design 2 design
v [ b [ [ kun [ ko [ A [ Ao || v | b2 | re | ki | koo | Ar2 | A2
10]109) 9 3 6 4 4 10 | 45 | 18 1 3 3 3
10|15} 6 1 3 1 1 10|15} 6 1 3 1 1
10115 6 1 3 1 1 10 | 20 | 18 3 6 8 8
10115 6 1 3 1 1 10| 30 | 12 1 3 2 2
10115 6 1 3 1 1 10 | 45 | 18 1 3 3 3
10 | 20 | 18 3 6 8 8 10 ] 20 | 18 3 6 8 8
10 | 20 | 18 3 6 8 8 10 | 30 | 12 1 3 2 2
10} 20 | 18 3 6 8 8 10 1 45| 18 1 3 3 3
10 1 30 | 12 1 3 2 2 10 1 30 | 12 1 3 2 2
101 30 | 12 1 3 2 2 10 | 45 | 18 1 3 3 3
10 | 45 | 18 1 3 3 3 10 | 45 | 18 1 3 3 3
131131 9 3 6 3 3 1313 9 3 6 3 3
13113) 9 3 6 3 3 13 (26| 8 1 3 1 1
13113 9 3 6 3 3 13 | 26 | 18 3 6 6 6
13126 | 8 1 3 1 1 13126 8 1 3 1 1
13126} 8 1 3 1 1 13 )26 | 18 3 6 6 6
13 ] 26 | 18 3 6 6 6 13 )26 | 18 3 6 6 6
16 | 40 | 10 1 3 1 1 16 | 40 | 10 1 3 1 1
18 1 34 | 17 3 6 4 4 18 1 34 | 17 3 6 4 4
191191 9 3 6 2 2 19119 9 3 6 2 2
19119 ] 9 3 6 2 2 19 1 38 | 18 3 6 4 4
19 |1 38 | 18 3 6 4 4 19 | 38 | 18 3 6 4 4
21 | 21| 16 6 10 6 6 2112116 6 10 6 6
21 | 21| 16 6 10 6 6 21 1351 15 3 6 3 3
211351 15 3 6 3 3 21|35 15 3 6 3 3
25 | 25| 16 6 10 5 5 251 25| 16 6 10 5 5
251251 16 6 10 5 5 25 |1 50 | 18 3 6 3 3
25 | 50 | 18 3 6 3 3 251 50 | 18 3 6 3 3

(’I:’U) v = 10s + 1,b1 = 58(108A+ 1),’!‘1 = 15.5‘, ku = 1,’621 = 2, /\11 = 2,}\21 =1 and
v=10s + 1, b2 = 3(103 + 1), T = 63, k12 = 1,k22 = 5, /\12 = 1, )\22 = 2,8 = 2,3, ciey
(’U) v=25+1b = s(2.s‘+ 1),7‘1 = 3s,k11 = L,ko1 = 2,11 = 2,A21 =1 and
v=25+1, by =5(2s+1),r2 =78, k12 = 2,kas = 5, 12 = 10, Ag2 = 11,5 = 6,7, ...,
(’U’i) v=4s+ 1,0 = S(4S+ 1),’!‘1 = 4s8,k11 = 2,ko1 = 2,11 = 2,X21 =1 and
v=4s+1,b; = s(4s + 1),1‘2 =58, k1o =1,kpe =4,A\120=2,X320=3,5=1,2,...,

(’U’ii) v=20s4+1,b; = 58(203+ 1),7’1 = 20,k11 = 2,ko1 =2, 11 = 2,A21 =1 and
v=20s+1,bp = 25(20s8 + 1),72 = 128,k12 = 1, koo =5, A\12 = 1, A2 = 2,5 = 1,2, ..,
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(’l)’l’l?,) v=4s+1,b) = 8(43 + 1),1"1 = 4s8,k11 = 2,ko1 = 2,A11 = 2, 1 =1 and
v=4s+1, by = 28(43 + 1), ro = 148, k12 = 2, k2 = 5, A2 = 10, A2 = 11,
§=2,3,..,

(iz) v =45+ 1,b; = s(4s+ 1),7‘1 = 58,k11 = 2,kg1 = 3,A11 = 3,221 = 2 and
v=4s+1, by =S(48+1),7‘2 =5s,k12 =1,kas =4, A\12 =2,A2 =3,5=2,3,...,

(z) v =208+ 1,b; = 58(20s 4+ 1),r1 = 208, k11 = 2,k21 = 3,A11 = 3,X1 =2 and
v=20s+1,by = 28(208 + 1),7"2 =12s,k12 =1,k =5, A2 =1, 22 =2,5=1,2, ..,
($Z) v=4s+ 1,b) = S(48+ 1),’!‘1 = 5s,k11 = 2,ko1 = 3,11 = 3,21 = 2 and
v=4s+1,by = 28(45 + 1),7‘2 = 14s,k12 = 2,k92 = 5,A12 =10, A2 = 11,s = 2,3, ...,
(ZL‘ZZ) v=4s+1,b; = 28(48 -+ 1),7‘1 = 12s,k11 = 2,k21 = 4,211 = 8, 91 =7 and
v=4s+1,bp = 3(48 -+ 1),'!‘2 =5s,k19 =1,kas =4,\12 =2, =3,5=2,3,...,
(.'D’L'L’L) v=10s+1,b; = 53(108 + 1),’!‘1 = 30s,k11 = 2,k21 =4,A\11 =8,A1 =T and
v=10s+1, by = s(10s + 1), ro =68, kig=1,kes =5,A12 =1, A2 =2,s=1,2,..,,
(:z:iv) v=25+1,by = 8(28 + 1),’!‘1 = 68,k11 = 2,ka1 = 4,011 =8, 1 =7 and
v=25+1,by = 8(23 + 1),7’2 =T7s,k12 = 2,koo = 5, 12 = 10, Aa2 = 11,5 = 3,4, ...,
implies the existence of the optimum chemical balance weighing design with matriz X
given in the form (8).

Proof. Tt is easy to prove that parameters of balanced bipartite block designs satisfy
the condition (15). O

5. Optimum chemical balance weighing design based on any number
of balanced bipartite block designs

Let N}, h = 1,2,...t, be the incidence matrix of the balanced bipartite block designs
with the parameters v, by, Tp, k1n, k2, Mh, A2n. From N}, we obtain other matrices
N}, by replacing the k5, elements equal to 1 of each column which correspond to the
elements belonging to the first subblock by ~1. Thus each column of N will contain
k1, elements equal to —1, kop, elements equal to 1 and v — kyp, — kop, elements equal to
0. In other words, in each of the b, weighing operations k;, + kop objects are weighed.
Among them ki are weighed on the right and kop on the left pan.
Now, we define the matrix X of the chemical balance weighing design as

X' = [NpiNg ... Ny (20)

In this design each of the p = v objects is weighed m = E;=1 rh timesinn = ZZ=1 bn
weighing operations.
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LEMMA 5.1. The chemical balance weighing design with design matriz X given in the
form (20) is nonsingular if and only if

Kin # kan (21)

for at least one h, h =1,2,...t.

Proof. For the design matrix X given a.bove, we have

t
X'X = Z(’r‘h - Aon + /\1}.) I, + Z()\zh - )\1;,)] 1,,1; (22)
Lh=1 h=1
and
rot quv-1 t
det(X'X) = Z(rh — A2n + A1) Z[rh + (v — 1)(A2n — A1n)). (23)
Lh=1 J =

The determinant (23) is equal to 0 if and only if

t ¢
Z Th = Z(/\2h — Atn) (24)
=1 =1
or
(1-9) D (Aan— ) = > 1. (25)
h=1 h=1

Using (7) it can be shown that (24) implies

Ain(kin + kan) _ An(kan = k1n)?
2 Z kinkon T2 Z kinkan

which is not satisfied since v > kip + kon, h =1,2,...,t. Again, using (7) it can be
estabilished that (25) implies

(k1n — kon)2 =0 for each h=1,2, .

The last expression is positive if and only if k15, # kop, for at least one b, h = 1,2, ..., ¢.
So lemma is proved. 0O

THEOREM 5.1. The nonsingular chemical balance weighing design with matriz X
given by (20) is optimal if and only if

> (en = M) = 0. (26)
h=1
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Proof. From the conditions (5) and (22) it follows that a chemical balance weighing
design is optimal if and only if the condition (26) holds. Hence the theorem. 0O

COROLLARY 5.1. If the nonsingular chemical balance weighing design with matriz X
given by (20) is optimal then

kop — kin = VVkin + kop for each h=1,2,...,1. 27)

Proof. According to Theorem 2.2 X is the matrix of the optimum chemical balance
weighing design if and only if XX = mlI,. This condition is satisfied if A\ip =
Aon, h=1,2,...,t. From (7) and (26) we have

_ Mnlkin (ki — 1) + kon(kan — 1)]

Azh 2k1nk2n

, h=1,2,..,t

and

1 = Arnl(kon — kn)? = (kin + kan)] 0

2 kink o
=t 1hR2h

The thesis of corollary is a result of this equation. O

COROLLARY 5.2. Let k1, and kap, h = 1,2,...t, are positive integers. The conditions
(27) are satisfied if and only if

sp(sp—1
ki = ——é( '; )
and
_ sp(sp+1)
2 b
where s, h = 1,2, ...,t, are positive integers greater than 1.

kan

From Theorem 5.1 we have

COROLLARY 5.3. The ezistence of balanced bipartite block designs with parameters
0, bh, Thy K1k, kohy Athy A2h, B = 1,2,...,t, for which condition (26) holds implies the
existence of the optimum chemical balance weighing design with matriz X given in
the form (20).

There is a big number of combinations between parameters of balanced bipartite
block designs for which condition (26) holds. Thus, we have many possible construc-
tions of the matrix X of optimal chemical balance weighing design for given p = v
and n = Y _; ba.
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6. Example

Let us assume that we want to estimate unknown measurements of p = v = 5 ob jects
and we have at our disposal n = 20 measurement operations. We have to choose design
matrix X in the form (20) in such a manner that the variance of each estimator of the
unknown measurement of object attains the lower bound, i.e. Var(i;) = 02/ S s
for each j = 1,2,..p. We assume also that each object can be measured 17 times.
Then the design matrix X in the form (20) could be constructed from three incidence
matrices of balanced bipartite block designs with parameters v = 5, b; = 10, 1, =8,
k)11 = 3, k21 = 1, )\11 = 3, )\21 = 3, the second one v = 5, b2 = 5, Ty = 4, k12 = 2,
k22=2,/\12=2,)\22=la.ndv=5,b3=5,r3=5,k13=1,k23=4, )\13=2,
A23 = 3. In this design Var(w;) = ‘1’—:, i=12,..p.

The design matrix X given in the form (20) is optimal for each ¢t = 1,2, 3, but from
these three possible constructions we can choose the best matrix X. According to the
definition 2.1 the best one would be construction for ¢ = 3. Based on the paper of
Huang (1976) we construct the incidence matrices of balanced bipartite block designs
v=>5,b=10,r =8, ki1=1, ko =3, A1=3,21=3

Ni=]1 I 0 1 1 1; 1, 0 1 1; |,

where 1; and 1 denote that the object exists in the first or in second subblock,
respectively, 0 the object does not exist in the block, v = 5, by = 5, 7o = 4, k1o = 2,
kao =2, M2 =2, Mg =11,

1, 1; 1, 1; O
1, 12 1; 0 1o
Ne=|[1; 1; 0 1 1 |,
1, 0 1, 1, 1
0 1 1, 1, 1;

v=25,b3=51r3=5,kiz=1,kyz=4, \i3=2, A3 =3

1, 1 13 15 1,
1 1; 12 1 1o
Nyg=| 1l 1o 1; 1 1,
I 1; 1o 1; 1
1 1o 1 1, 1L

In each incidence matrix of balanced bipartite block design we replace the elements,
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that are equal to 1 and they correspond to the elements belonging to the first subblock,
(1;) by —1. As the next step we built design matrix X in the form (20) for ¢t = 3

0 -1 1 1 1
1 0 -1 1 1
1 1 0 -1 1
1 1 1 0 -1
-1 1 1 1 0
0 1 1 -1 1
1 0 1 1 -1
-1 1 0 1 1
1 -1 1 0 1
1 1 -1 1 0
X= -1 -1 1 1 0
-1 1 -1 0 1
1 -1 0 -1 1
-1 0 1 -1 1
0 1 1 -1 -1
-1 1 1 1 1
1 -1 1 1 1
1 1 -1 1 1
1 1 1 -1 1
|1 1 1 1 -1 ]
REFERENCES

Banerjee K.S. (1975). Weighing Designs for Chemistry, Medicine, Economics, Operations
Research, Statistics. Marcel Dekker Inc., New York.

Ceranka B., Graczyk M. (2001). Chemical balance weighing designs under the restriction on
weighings. Discussiones Mathematicae — Probability and Statistics 21, 111-120.

Ceranka B., Katulska K. (1999). Chemical balance weighing designs under the restriction on
the number of objects placed on the pans. Tatra Mt. Math. Publ. 17, 141-148.

Ceranka B., Katulska K., Mizera D. (1998). The application of ternary balanced block de-

signs to chemical balance weighing designs. Discussiones Mathematicae — Algebra and
Stochastic Methods 18, 179-185.

Hotelling H. (1944). Some improvements in weighing and other experimental techniques.
Ann. Math. Stat. 15, 297-305.

Huang C. (1976). Balanced bipartite weighing designs. Journal of Combinatorial Theory (A)
21, 20-34.

Raghavarao D. (1971). Constructions and Combinatorial Problems in Design of Ezperiments.
John Wiley Inc., New York.



84 B. Ceranka, M. Graczyk

Swamy M.N. (1982). Use of balanced bipartite weighing designs as chemical balance designs.
Comm. Statist. Theory Methods 11, 769-785.

Received 9 October 2002; revised 15 December 2002

Optymalne chemiczne uklady wagowe oparte na dwudzielnych ukladach
blokéw

STRESZCZENIE

W pracy przedstawiony jest problem estymacji indywidualnych miar obiektéw przy
wykorzystaniu modelu chemicznego ukladu wagowego, dodatkowo zakladajac ograni-
czenia na liczbg pomiaréw. Podane zostalo dolne ograniczenie na wariancje estyma-
tora kazdej miary obiektéw oraz warunki konieczne i dostateczne na to, aby wariancja
estymatora osiggala to dolne ograniczenie. Do konstrukcji macierzy ukladu optymal-
nego chemicznego ukladu wagowego wykorzystujemy macierze incydencji dwudziel-
nych ukladéw blokéw.

Slowa kluczowe: chemiczny uklad wagowy, dwudzielny uklad blokéw.



